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Influence of chemical disorder on wavefunctions and 
optical transition rates in one-dimensional systems 
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Ecole Polytechnique FtdCrale de Lausanne, Institut de Physique AppliquCe, CH-1015 
Lausanne, Switzerland 

Received 25 November 1988, in final form 30 January 1989 

Abstract. We investigate the influence of chemical disorder on wavefunctions and optical 
transition rates in a one-dimensional (ID) alloy A,BI_,. The Schrodinger equation is solved 
for real-space A and B potentials. Even for large disorder, where the states are localised 
over only a few lattice sites, the calculated spectral function shows a strong dependence on 
the energy E and the k-vector, which can be understood as a remnant of the virtual-crystal 
band structure. The dependence of the optical matrix elements on the energies of the initial 
and final states is explained by that of the overlaps of the respective eigenfunctions in real 
and in k-space. For large disorder, the overlap in real space between valence states and 
conduction states near the gap becomes small, and in consequence the corresponding 
optical transitions are suppressed. The results are compared with the coherent potential 
approximation (CPA). It is found that even in our case of ID disorder, which is the most 
difficult for CPA, the general behaviour of the transition matrix elements can be understood 
within the single-site CPA. 

1. Introduction 

In disordered systems the electron wavefunctions are usually characterised by their 
localisation properties. Thus it is now generally accepted that ID and ZD disorder leads 
to spatially localised eigenfunctions, whereas for 3D disorder the eigenstates may be 
extended or localised, depending on the amount of disorder and on the energy (Abra- 
hams et a1 1979). Moullet et a1 (1985) and Ingers et aZ(1988) have shown recently that 
this description of the wavefunctions is insufficient. In particular it does not allow us to 
understand the energy dependence of optical matrix elements, which are strongly 
influenced by the phases of the involved wavefunctions. This is similar to the situation 
found for translation-invariant ordered crystals, where the optical matrix elements 
depend essentially on the phases of the Bloch eigenfunctions, which give rise to the k- 
selection rule. Moullet et a1 (1985) have shown that the energy dependence of the phase 
correlations of the wavefunctions in disordered systems remains very similar with respect 
to the ordered crystal, and they have therefore suggested that the k-selection rule for 
optical transitions remains important even when the eigenfunctions are localised over 
only a few sites, and that it weakens only gradually with increasing disorder. This has 
been confirmed by the numerical calculations of Ingers et a1 (1988). Their calculations 
have, however, only been done for the case of a rather academic disorder, where the 
stochastic parameters responsible for the disorder, which were either the diagonal 
elements in an Anderson Hamiltonian or the depths of the atomic potentials positioned 
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at the lattice sites of a regular lattice, were distributed according to a rectangular 
distribution function. 

In the present paper we investigate the situation for the more realistic case of chemical 
disorder A,BI-,. As Ingers et a1 (1988) we restrict ourselves to the case of disordered ID 
chains, which are not only interesting in themselves but are also sufficient for the 
discussion of the specific properties of chemical disorder, as long as we are only interested 
in its principal characteristics. Since it is difficult to study inter-band correlations within 
a two-band Anderson model (see Ingers et a1 1988), we solve the Schrodinger equation 
for real-space A and B potentials. It will be shown not only that the k-selection rule does 
not immediately lose its significance in the presence of chemical disorder, as might be 
expected from the results of Ingers et a1 (1988), but also that it remains important up to 
very large disorder, where the electron states are essentially separated in A and B states 
and localised over only a very small number of lattice sites. Further, we give evidence 
for a spatial correlation between states belonging to different bands. This is in contrast 
to the findings of Ingers et a1 (1988) for the case of continuous disorder, for which no 
particular spatial inter-band correlations could be observed. 

The numerical results are compared with the predictions of the single-site CPA method 
(Soven 1967,1969, Velicky et a1 1968, Velicky 1969, Abe and Toyozawa 1981). We find 
that the CPA explains the principal effects of chemical disorder, excepting the tail region 
near the band edges. Even in the most critical case of ID disorder, where it is less 
adequate, it provides a good overall description of the behaviour of the one-electron 
states, as well as the optical spectra. This is encouraging since the CPA approach is 
much more reliable in 2~ and 3 ~ ,  where direct calculations of the optical properties of 
disordered systems become very difficult, if not impossible. 

2. Numerical approach 

Our calculations are based on the Hamiltonian 
N 

H = - A  + U,U(X - na). 
n = l  

It describes a chain of Natoms, in which the atoms are positioned on the sites of a regular 
ID lattice with lattice constant a. The parameter a, distinguishes between A and B atoms, 
i.e. it oscillates between two possible values 

for A atoms 

for B atoms 
a, + ( 2 )  

a0 - w 
which are statistically distributed over the chain according to the concentrations x and 
1 - x. For simplicity we describe the spatial dependence of the atom potentials by 
Gaussians 

The Schrodinger equation can be solved easily in a basis set of plane waves for either 
periodic or anti-periodic boundary conditions. In our calculations we take a sufficiently 
large disorder, i.e. a sufficiently large W ,  such that for the chosen chain length of Natoms 
and within the considered energy range, the localised eigenstates of the Hamiltonian (1) 
are not influenced by the type of boundary conditions, and therefore are representative 
of an infinite disordered chain. 
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The eigenstates are given by the eigenvalues Ei and the eigenfunctions vi. For 
periodic boundary conditions we obtain 

vi@) = 2 c: exp(iKnx) (4) 
n 

with Kn = (27c/Nu)n and n = - M ,  . . . , -1, 0, 1, . . . , M .  By replacing the an in 
equation (1) by their average value a. (see equation (2)), we obtain the virtual-crystal 
Hamiltonian. In this case the eigenstates are given by the band structure E‘(k) and the 
Bloch eigenfunctions vi@), where lis the band index and kis limited to the first Brillouin 
zone, i.e. 

Defining an energy resolution A through the filter function 
- Z / U  < k c X / U .  

1 forlEl < A / 2  

otherwise 
= io 

we can calculate the density of states 

and the participation number 

( 5 )  

which measures the number of sites covered by the wavefunctions. Here qr is the charge 
of state n at atom i 

( i + l ) a  

(i- i)a 
47 = 1 ivn(x>12 dx-  (8) 

The brackets (( . . , )) indicate configurational averaging. The average optical matrix 
element for a given photon energy hw and a given final-state energy Ef is obtained as 

( n l p J m )  = 2 c;*c:K,. (10) 
S 

For comparison we also calculate the spatial overlap between the initial and final states 
in equation (9) 

x ((2 n , m  d*(Em -Ef)dA(En -Ei)obm)) (11) 

with 

onm = C (q;)1’z(qY)1’2* (12) 
I 

In order to study the influence of the disorder on the electron states, we expand the 
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localised eigenfunctions qi (x)  in the basis of the Bloch eigenfunctions of the virtual 
crystal 

and calculate the spectral function 

S( lk ,  E )  = P ( E  - E i ) l C j k / * .  
i 

3. Coherent potential approximation approach 

It is evident that it will be rather difficult to apply the numerical approach described 
above to 2~ or 3~ disordered systems, since the number of plane waves necessary to 
obtain convergence for the lowest bands increases with the power of the dimension. For 
this reason, and also because it would be satisfying to understand the general behaviour 
of the eigenstates in the presence of disorder in a more analytical way, we have tested 
the extent to which the single-site CPA (Soven 1967, 1969, Velicky et a1 1968, Velicky 
1969, Abe and Toyozawa 1981) is able to predict our numerical results. The CPA has the 
advantage that it is easily applicable to 2D and 3~ systems, where it is even more reliable 
than in one dimension. It is also known that localised states in the band region are 
correctly treated within the single-site CPA. It fails, however, in the tail region, where 
the states are localised at specific clusters of atoms. Comparison between our numerical 
results and the CPA results will thus give evidence for the importance of such cluster 
states in this energy region. 

The CPA has been extensively discussed in the literature. It has also been extended 
beyond the single-site approximation (Economou 1979, and references therein). For 
simplicity, we have, however, based our calculations of the density of states and of the 
spectral function on the original formulation of Soven (1969). In the following we briefly 
recall the general expressions that are necessary for our calculations, and refer the reader 
for further details to Soven (1969) and Velicky et a1 (1968). 

Under the assumption that the disorder is sufficiently weak, such that inter-band 
interactions can be neglected, we start from the configurational average of the Green 
function for a single band 1. In the CPA this is written as 

where Hb is the Hamiltonian operator that describes the band I of the virtual crystal and 
X'(E) is an energy-dependent complex self-energy. Calculating the diagonal matrix 
elements between the Bloch eigenfunctions of the virtual-crystal Hamiltonian we obtain 
for the spectral function for a given band I of the disordered system 
S(lk,  E )  = -(l/n) Im(lkI((G'+(E)))IIk) 

(16) 
1 

= - ( l /n)  Im 
E - E@) - X'(E) .  

The corresponding density of states g'(E) is 

g'(E) = [l/2n] dkS(lk,  E) .  (17) J 
X'(E) is obtained from the condition that the average single-site t-matrix vanishes, if all 
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energies and potentials in the corresponding expression are shifted by Z'(E) ,  i.e. Z'must 
satisfy the condition 

= O  with a = A, B. (18) 
Here uA and uB are the potentials of the A and B atoms; cA and cB the respective 
concentrations, i.e. cA = x and cB = 1 - x ;  and Gb+ is the Green function for the fth 
band of the virtual crystal. 

Under the assumption that the matrix elements (lklu,lfk') depend only weakly on k 
and k' ,  we can replace them by their mean value 

(lkl U* Ilk') = (a0 - W)V' =: G' 
( fkluB Ilk') = (ao  - W)V'  =: Yg' 

(19) 

with 

V' = (lk(u/fk') = const. 

The bar indicates the averaging with respect to k and k' .  It should be noted that the 
global phases of the wavefunctions are arbitrary. It can easily be seen that they will not 
influence the results discussed later. However, care must be taken that the phases do 
not enter the above average procedure. In order to obtain a meaningful average, one 
has to define a unique phase of the matrix elements, e.g. by taking the sign of the matrix 
element at k = k' = 0, or by averaging the absolute values. Z'(E)  is then obtained from 

( I k '  @')) If'') = 1 - { [ V k  - 2 ' (E)]a /2n}  J dq/[E+ - E'(q)  - Z ' ( E ) ]  
c,[& - Z ' (E) ]  

= O  a = A , B .  (20) 
Equation (20) can be solved by numerical iteration. 

The optical transition matrix elements will be analysed within the framework of the 
theory of Abe and Toyozawa (1981). Following Abe and Toyozawa we write for the 
optical absorption 

Z(E) = 11 d E l  d E 2  S(E2 - E ,  - E ) S ( E l ,  E 2 )  

where the integration over El (E2) is taken over the occupied (unoccupied) states. The 
spectrum function S(E1, E2)  is given by 

s ( E ~ ,  ~ 2 )  = c (nci ~2 - HC) Inc) I(nclninu)l2 (nul 6 ( ~ 2  -  nu))) (22) (( n 

where Il is the dipole operator, inc) (inu)) are the Wannier functions at site n of the 
conduction (valence) states, and HC and Hy are the one-particle Anderson Hamiltonians 
for the conduction and valence bands, respectively. 

The average matrix element for optical transitions between initial states at energy 
E l  and final states at energy E ,  is then given by 

WE1 3 E2) = S(E1, E2)/g"(E1)gC(E2) (23) 
where g' (gc) is the valence (conduction) band density of states. For the calculation of 
S(E1, E,) one assumes that I(ncln1nu)l = p = const. In the following we putp  = 1. 
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S(El, E2)  can be expressed in terms of the Green function describing the valence 
(conduction) band 

G"(z~)  = l / ( z l  - H") 
GC(22) = 1 / ( ~ 2  - HC).  

We obtain 

with E: = E l  + ie and E: = E 2  + ie. The operator Cis  given by 
S(E1, E2) = (1/n2)(( (nclIm G"(E:)CIm Gc(E i )  [nu)))  

c = 2 Inu)(nci. (26) 

(25) 

n 

Equation (25) can be rewritten using the configurational average of the two-particle 
Green function 

K = (( (nclG'CG" Inu) )). 
We get 
S(E1 ,  E 2 )  = [1/(2~di)~] [K(E: ,  E:) - K ( E ; ,  E:)  - K(E: ,  E ; )  + K ( E ; ,  E; )] .  

(28) 
As shown by Abe and Toyozawa (1981), K ( z l ,  z 2 )  can be calculated from 

with 

and 

R ( Z l , Z 2 )  = ( 1 / N )  c FI( zJFXz2) .  (31) 
k 

In the above equations F f ( z ) ,  p = v,  c, is the diagonal matrix element of the virtual- 
crystal Green functions in the representation of the Bloch eigenfunctions, i.e. 

= (~pIG6(z)lkp) p = v ,  c. (32) 

((tY,(Z 1 ( 2 2 ) ) )  = IC g X z 1  )gca(z2)tXz Jtca(Z2) a = A , B  (33) 

In the on-site approximation we obtain 

1y 

with 

In(33),gi(E) and &$(E) arethepartialdensityofstates,whichmeasurethecontribution 
of A and B states, respectively, such that 

In (34), P ( z )  is given by 
g,YE)  = gi(E) + gf; ( E )  p = v ,  c. (35)  

1 1 
FP(Z) = ( l /N) F f ( z )  =-E N k Z - E ' ( k ) - X ' ( Z ) '  (36) 

k 

The densities g i  ( E )  (g6 ( E ) )  are calculated according to Velicky et aZ(l968). We obtain 

(37) 
c, 1 

&(E)  = - - Im P(Z)  
JG 

For the evaluation of &(E)  we note that in our case of chemical disorder the disorder 
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Figure 1. Band structure of the virtual crystal. Figure 2. Eigenstates of the single atom potential. 
The atom potential is represented by the full 
curve. The eigenfunctions (arbitrary units) and 
eigenenergies are given by the dotted and broken 
curves. 

in the valence and conduction bands is spatially correlated. In other words, the matrix 
elements 

E ;  = (nul lqnu)  

E;  = (nclH"nc) 

E;  - EC = @(EX - E") 

and 

fluctuate in the same sense at each site n around their mean values E" and cC, i.e. 

with @ > 0. 
(38) 

4. Numerical results 

For our calculations we have used the following parameters: a = lrB, CY = 6.25ri, a. = 
23.75, N = 60, x = 0.5. The configurational average includes 20 samples. The number 
of plane waves in our basis set is equal to 361, i.e. we take M = 180 in equation (4). With 
this choice the eigenstates in the energy range of the first two bands of the virtual crystal 
are fully converged, independent of the disorder. Two strengths of disorder were 
considered: W = 1.75 (weak disorder) and W = 2.75 (strong disorder). These par- 
ameters scale with the lattice constant, as shown by Ingers et a1 (1988). The energy 
resolution for the calculated densities of states is A = 1 Ryd; for the other quantities we 
have given the results for A = 0.5 Ryd. The band-structure energies are given with 
respect to the average potential. 

In principle the calculated eigenstates will depend slightly on the chosen boundary 
conditions (periodic or anti-periodic) , depending on their localisation properties. We 
have carefully controlled that for the above energy resolution the boundary conditions 
do not influence the results presented. In fact, in the considered energy range the 
individual eigenstates already turn out to be independent of the boundary conditions 
chosen. This is true even for the participation number of individual states, which in this 
respect is the most critical of the quantities presented. We find that only states well above 
the lower band edge of the second band with participation numbers of the order of 20- 
30 start to become slightly dependent on the boundary conditions. 

The virtual-crystal band structure (W = 0) is shown in figure 1. For comparison we 
show in figure 2 the eigenstates of the single Gaussian potential that corresponds to the 
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Energy ( R y d l  Energy I R y d I  

Figure 3. Density of states for weak disorder 
(W = 1.75, A = 1). 

virtual crystal. The Gaussian potential has two bound eigenstates. The lowest one has 
even symmetry and is well separated in energy from the second one, which has odd 
symmetry. It is evident from figure 2 that the band with lowest energy can be described 
within a single orbital tight-binding model. This is not the case for the bands at higher 
energy, since already the second bound state is very close to the continuum. It can 
therefore be expected that these bands will rapidly become free-electron-like, i.e. 
independent of the potential and of the disorder. This general picture is in agreement 
with the band structure (figure 1) and also with our results for the alloy system, which 
are given in figures 3-7 for the case of weak disorder, and in figures 8-12 for the case of 
strong disorder. 

We first discuss the case of weak disorder. The density of states is shown in figure 3. 
Besides the broadening of the l / d E  singularities at the band edges it still resembles that 
of the virtual crystal. As already suggested above, the conduction band is much less 
affected by the disorder than the valence band. The oscillations on the high-energy side 
are due to our method of calculation. Our supercell approach is only valid for sufficiently 
strong disorder, where the states are scattered between the energy intervals of width A .  
In the case of weak disorder it gives rise to fluctuations in the region of low density. With 
our parameters (A = 1 Ryd, N = 60), these spurious oscillations around the true density 
of states only become important in the high-energy region of the conduction band. Since 
we are mainly interested in the optical transitions involving conduction band states close 
to the gap, we do not correct for this effect. 

The energy dependence of the participation number is shown in figure 4. Again the 
disorder affects mostly the valence band, where the electronic states are localised over 
5-10 sites. In the conduction band only states near the band edge are strongly localised; 
states away from the band edge become rapidly delocalised and extend practically over 
the periodicity volume of 60 atoms. As mentioned before, the extended eigenstates in 
this energy range become dependent on the boundary conditions, and are therefore 
excluded from our discussion. 

In figure 5 we show the spectral function (equation (14)) as a function of the energy 
of the localised states and of the k-vector of the unperturbed Bloch eigenfunctions of 
the virtual crystal. The results are given in the extended zone scheme, i.e. the first 
Brillouin zone corresponds to the unperturbed valence states, the second to the unper- 
turbed conduction states. The principal effect of the disorder is an energy-dependent 
broadening of the spectral function of the disordered alloy with respect to that of the 
ordered virtual crystal. As already seen from the density of states and the participation 
number, the conduction band states are the less affected by the disorder. The maximum 

Figure 4. Participation number (weak disorder). 
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Figure 5. Spectral function (weak disorder). 

Energy of initial states IRyd]  Energy o f  initial states IRyd) 

Figure 6.  Optical matrix elements and spatial Figure 7. Optical matrix elements and spatial 
overlaps; the final-state energy (13-13.5 Ryd) is overlaps; the final-state energy (14-14.5 Ryd) is 
chosen close to the conduction band edge (weak chosen higher in the conduction band (weak dis- 
disorder). order). 

of the spectral function follows an E ( k )  relation, which resembles that of the virtual 
crystal. The result is very similar to the result presented by Ingers et al (1988) for 
continuous disorder. In the valence band we find, however, somewhat more structure, 
which indicates the beginning of a splitting of the valence band into two bands with 
predominantly A or B character. 

The dependences of the calculated optical matrix elements and of the corresponding 
spatial overlaps on the energy of the initial states are shown in figures 6 and 7. The results 
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Energy (Rydi Energy (Ryd)  

Figure 8. Density of states for strong disorder 
(W = 2.75, A = 1). 

Figure 9. Participation number (strong disorder). 

are given for two final energies, close to the conduction band edge (figure 6) and 
somewhat higher in the conduction band (figure 7). It is seen that the energy dependence 
of the optical matrix elements cannot be explained by the variation of the spatial overlap 
between initial and final states. For final states close to the conduction band minimum 
(figure 6) the energy dependence of the matrix elements becomes quite complicated. 
We find two maxima, one near the upper valence band edge at about 4 Ryd and the 
other even more pronounced inside the band at about 2 Ryd. Comparison with the 
spectral function (figure 5 )  and the spatial overlap given in figure 6 shows that the relative 
weight of the two maxima is essentially due to the behaviour of the latter, whereas the 
low transition probability for initial states with E < 1 Ryd is explained by the behaviour 
of the spectral function. The oscillatory behaviour of the spatial overlap indicates a 
significant spatial correlation between states at the conduction band edge and valence 
states. 

The relative importance of the two peaks is reversed, when we consider transitions 
towards final states somewhat higher in energy (figure 7). In this case the overlap 
becomes more uniform and the energy dependence of the matrix elements is essentially 
explained by the overlap of initial and final states in k-space, i.e. the spectral function. 

For stronger disorder the valence band splits into two bands with predominantly A 
or B character (figure 8) and the states become more localised (figure 9). The splitting 
into two bands is very niclely seen from the spectral function (figure 10). The two maxima 
of the spectral function in the valence band region again follow separately an E ( k )  
relation. The somewhat smaller dispersion of the band at lower energy can be attributed 
to the fact that the localisation of the atomic states increases with the depth of the atomic 
potential. 

The energy dependence of the optical matrix elements and of the corresponding 
spatial overlaps is shown in figure 11 for final-state energies close to the conduction band 
edge, and in figure 12 for final states somewhat higher in the conduction band. The 
behaviour of the spatial overlap indicates that states near the conduction band edge are 
predominantly localised on the more attractive atoms (A atoms). This leads to the small 
(large) overlap with the valence states of type B (A). 

5. CPA results 

As already mentioned, the CPA method should work best for the lowest band ('valence 
band'), for which equation (19) is a good approximation. We therefore present first our 
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Figure 10. Spectral function (strong disorder). 

Energy of initial statesiRyd! Energyof initial states i R y d )  

Figure 11. Optical matrix elements and spatial 
overlaps; the final-state energy (12-12.5 Ryd) is 
chosen close to the conduction band edge (strong 
disorder). order). 

Figure 12. Optical matrix elements and spatial 
overlaps; the final-state energy (13.5-14 Ryd) is 
chosen higher in the conduction band (strong dis- 

Energy iRyd! 
Figure 13. CPA, weak disorder; density of states 
for the valence band. 



6644 H Carruzzo et a1 

- 4  U 

Figure 14. CPA, weak disorder; spectral function for the valence band. 

CPA results for the valence band of our model described in the previous section. The 
band structure of the virtual crystal as well as the matrix element of the single Gaussian 
between the virtual-crystal eigenfunctions (see equation (19)) are calculated numeri- 
cally. For the matrix element we obtain U' = 1.09 k 0.14 Ryd; the approximation by its 
average value is thus reasonable. The other parameters remain the same as in the 
previous section. In figures 13 and 14 we show the results for the density of states and 
the spectral function for the case of weak disorder, and in figures 15 and 16 for the case 
of strong disorder. Comparison with the respective exact numerical results in figures 3, 
5 ,  8 and 10 shows that the CPA method gives a quite satisfactory overall description of 
the effects of chemical disorder on the density of states as well as on the spectral function. 
As expected, the single-site CPA fails, however, in the tail regions near the band edges, 
in which the states are localised at small specific clusters. In principle, this can be 
corrected for by using the cluster CPA (see e.g. Eggarter and Troper 1987). 

As already mentioned above, equation (19) is less justified for the description of the 
conduction band of our numerical model. Since in the present work we are only interested 
in the general ability of the CPA method to describe the dependence of the optical matrix 
elements on the initial- and final-state energy, we have applied the CPA to the simpler 
case of a two-band Anderson Hamiltonian with nearest-neighbour interaction V and 
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- L  0 

Figure 16. CPA, strong disorder; spectral function for the valence band. 

Energy (units of BI 

Figure 17. CPA model, weak disorder; model den- 
sity of states for valence and conduction band, as 
well as partial density of states on A and B atoms. 

2 --1 5 
Figure 18. CPA model, weak disorder; optical matrix elements as a function of the initial- and 
final-state energies. 



6646 H Carruzzo et a1 

- 2 - 1  0 1 2 3 4 5 6 

Energy (units of 6 )  

Figure 19. cpamodel, strong disorder; model den- 
sity of states for valence and conduction band, as 
well as partial density of states on A and B atoms. 

Figure 20. CPA model, strong disorder; optical matrix elements as a function of the initial- 
and final-state energies. 

diagonal chemical disorder W. The parameters describing the virtual crystal are V = 
-0.5B for the valence band, and V = 1B for the conduction band. B defines the chosen 
energy units and thus does not influence the results. The centres of the two bands are 
placed at E" = 0 and .zC = 4B, respectively. The dispersion of each band is thus given by 
a single cosine. The diagonal disorder is described by the fluctuations of amplitude 
W/2 around E" and cC. Since the disorder effects scale with the band widths we can reduce 
the number of parameters and take the same Wfor both bands. 

Similar to the numerical calculations discussed in the previous section we present the 
results for two degrees of disorder, W = 0.25B (weak disorder) and W = 0.55B (strong 
disorder). The results for weak disorder are given in figures 17 and 18, and the results 
for stronger disorder in figures 19 and 20. Under the simplifying assumptions of the 
Anderson model the densities of states (figures 17 and 19) become symmetric with 
respect to the corresponding band centres. In agreement with the previous results, 
increasing disorder leads to a splitting of the two bands. We have also given the individual 
contributions of the A and B states to the total densities of states, which can be easily 
calculated in the present simplified CPA approach (see equation (37)). It is seen that in 
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fact the two contributions are separated in energy, such that low-energy states in each 
band are localised on the A atoms, whereas high-energy states in each band are localised 
on the less attractive B atoms. We emphasise that this is not a disorder effect, but is 
already observed in the ordered AB crystal. 

The dependence of the optical matrix element on the energies of the initial and final 
states is shown in figures 18 and 20. With the exception of transitions involving states 
very close to the band edges, the CPA results are in good qualitative agreement with the 
numerical results discussed in the previous section. This shows that not only the energy 
dependence of the spectral function but also that of the spatial overlap, which are 
both needed for a correct description of the behaviour of the matrix elements, can be 
understood within the CPA approach. 

6. Conclusions 

We have investigated the influence of chemical disorder on the wavefunctions and on 
the optical transition matrix elements. Our numerical study shows that the dependence 
of the optical transition rates on the initial- and final-state energies can be understood 
from the localisation properties of the eigenfunctions in real space and in k-space. The 
optical matrix elements depend on the overlap of the involved functions in real space 
and, which is as important, also on their overlap in k-space. The dependence of the latter 
on the energy of the states is a consequence of the behaviour of the spectral function, 
which for weak disorder follows an E ( k )  relation close to that of the virtual crystal. For 
strong disorder, where the states are either localised on the A or the B atoms, we obtain 
a E ( k )  dispersion of the spectral function for A and B bands, which resembles that of an 
ordered AB crystal. Comparing our results with those of Ingers et a1 (1988) for the case 
of continuous disorder, we find that the spatial overlap between initial and final states 
becomes much more important in the case of chemical disorder. This is particularly true 
for large chemical disorder, where the A and B potentials become very different. In this 
case we find that only A-A and B-B transitions survive, and A-B transitions are 
suppressed. This leads to vanishing transition matrix elements for optical transitions 
between states close to the gap. 

Comparison of our numerical results with the ones obtained from the CPA description 
shows that the latter gives a correct description of the principal effects of chemical 
disorder on the one-electron states as well as on the optical transition probabilities. This 
is encouraging, since it is well known that the CPA description becomes much better for 
the 2D and 3~ case. 
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